Resources

Explore libraries, tools, and learning resources for creating stunning audio-reactive visualizations

Essential Libraries

Three.js

A lightweight 3D library that makes WebGL simple. Perfect for creating immersive audio-reactive 3D visualizations in the browser.

Tone.js

A Web Audio framework for creating interactive music in the browser. Essential for professional audio analysis and beat detection.

GSAP

The GreenSock Animation Platform provides professional-grade animation capabilities. Perfect for smooth, performance-optimized transitions.

Theatre.js

A JavaScript motion design library with a visual interface for animation. Great for creating timeline-based audio reactions.

WebMIDI.js

Makes working with MIDI hardware simple. Enables connecting your visualizations directly to MIDI controllers for live performances.

Meyda

Audio feature extraction library for the Web Audio API. Provides advanced audio analysis capabilities beyond basic frequency data.

Code Examples

Basic Audio Analyzer Setup

A foundation for any audio-reactive visualization project. This example initializes the Web Audio API analyzer to extract frequency data from audio.

// Create audio context
const audioContext = new (window.AudioContext || window.webkitAudioContext)();

// Create analyzer node
const analyzer = audioContext.createAnalyser();
analyzer.fftSize = 1024;  // Must be power of 2
analyzer.smoothingTimeConstant = 0.85;  // 0-1 range

// Frequency data arrays
const frequencyData = new Uint8Array(analyzer.frequencyBinCount);
const timeData = new Uint8Array(analyzer.frequencyBinCount);

// Load and play audio
async function loadAudio(url) {
  try {
    const response = await fetch(url);
    const arrayBuffer = await response.arrayBuffer();
    const audioBuffer = await audioContext.decodeAudioData(arrayBuffer);
    
    // Create source node
    const source = audioContext.createBufferSource();
    source.buffer = audioBuffer;
    
    // Connect audio graph
    source.connect(analyzer);
    analyzer.connect(audioContext.destination);
    
    // Start playback
    source.start(0);
    
    // Begin analysis
    requestAnimationFrame(analyzeAudio);
    
  } catch (error) {
    console.error('Error loading audio:', error);
  }
}

// Analyze audio in animation loop
function analyzeAudio() {
  // Get frequency data (0-255 range)
  analyzer.getByteFrequencyData(frequencyData);
  
  // Get time domain data (0-255 range)
  analyzer.getByteTimeDomainData(timeData);
  
  // Use the data to drive visualizations
  updateVisualization(frequencyData, timeData);
  
  // Loop
  requestAnimationFrame(analyzeAudio);
}

// Example visualization update function
function updateVisualization(frequencyData, timeData) {
  // Calculate average bass energy (frequencies 0-10)
  let bassSum = 0;
  for (let i = 0; i < 10; i++) {
    bassSum += frequencyData[i];
  }
  const bassAvg = bassSum / 10 / 255;  // 0-1 range
  
  // Apply to visualization elements
  myVisualElement.scale.set(1 + bassAvg * 2);
}

// Start everything
loadAudio('path/to/audio.mp3');

Audio-Reactive Particle System

Three.js example of particles that react to audio frequency data. Each particle's movement and color are influenced by different frequency bands.

// Create particle system geometry
const particleCount = 5000;
const particles = new THREE.BufferGeometry();
const positions = new Float32Array(particleCount * 3);
const colors = new Float32Array(particleCount * 3);

// Initialize particles in a sphere
for (let i = 0; i < particleCount; i++) {
  const i3 = i * 3;
  
  // Random sphere distribution
  const radius = Math.random() * 30;
  const theta = Math.random() * Math.PI * 2;
  const phi = Math.acos(2 * Math.random() - 1);
  
  positions[i3] = radius * Math.sin(phi) * Math.cos(theta);
  positions[i3 + 1] = radius * Math.sin(phi) * Math.sin(theta);
  positions[i3 + 2] = radius * Math.cos(phi);
  
  // Random initial colors
  colors[i3] = Math.random();
  colors[i3 + 1] = Math.random();
  colors[i3 + 2] = Math.random();
}

particles.setAttribute('position', new THREE.BufferAttribute(positions, 3));
particles.setAttribute('color', new THREE.BufferAttribute(colors, 3));

// Create particle material
const particleMaterial = new THREE.PointsMaterial({
  size: 0.5,
  vertexColors: true,
  transparent: true,
  opacity: 0.8
});

// Create particle system
const particleSystem = new THREE.Points(particles, particleMaterial);
scene.add(particleSystem);

// Function to update particles with audio data
function updateParticles(frequencyData) {
  const positions = particles.attributes.position.array;
  const colors = particles.attributes.color.array;
  
  // Calculate audio energy in different frequency bands
  const bassEnergy = getAverageEnergy(frequencyData, 0, 10) / 255;
  const midEnergy = getAverageEnergy(frequencyData, 10, 100) / 255;
  const highEnergy = getAverageEnergy(frequencyData, 100, 255) / 255;
  
  for (let i = 0; i < particleCount; i++) {
    const i3 = i * 3;
    
    // Update positions based on frequency energies
    const dist = Math.sqrt(
      positions[i3] ** 2 + 
      positions[i3 + 1] ** 2 + 
      positions[i3 + 2] ** 2
    );
    
    // Different frequency bands affect different dimensions
    positions[i3] += Math.sin(dist * 0.1) * bassEnergy * 0.5;
    positions[i3 + 1] += Math.cos(dist * 0.05) * midEnergy * 0.3;
    positions[i3 + 2] += Math.sin(time * 0.1) * highEnergy * 0.2;
    
    // Update colors based on frequency
    colors[i3] = Math.min(1, bassEnergy * 2);     // Red - bass
    colors[i3 + 1] = Math.min(1, midEnergy * 2);  // Green - mids
    colors[i3 + 2] = Math.min(1, highEnergy * 2); // Blue - highs
  }
  
  particles.attributes.position.needsUpdate = true;
  particles.attributes.color.needsUpdate = true;
}

// Helper function to get average energy in a frequency range
function getAverageEnergy(frequencyData, startBin, endBin) {
  let sum = 0;
  for (let i = startBin; i < endBin; i++) {
    sum += frequencyData[i];
  }
  return sum / (endBin - startBin);
}

From Manual to AI: Evolving Your Visual Performance Workflow

How artificial intelligence is revolutionizing audio-reactive visualization creation

The Evolution of Audio Visualization

Audio-reactive visuals have evolved dramatically over the decades, from simple oscilloscope displays to sophisticated real-time 3D environments that respond to every nuance of sound.

While manual programming techniques offer precise control and creative freedom, they come with significant challenges:

  • Steep technical learning curve requiring WebGL, shaders, and audio processing expertise
  • Time-intensive development cycles that delay creative iteration
  • Performance optimization challenges requiring specialized knowledge

The emergence of AI-powered tools like Compeller.ai represents the next evolutionary step, democratizing access to sophisticated audio-reactive visuals.

AI-Powered Benefits

Accelerated Production

Generate in minutes what would take days to code manually

Creative Exploration

Rapidly prototype ideas and explore creative variations

No-Code Solution

Create professional-quality visuals without programming knowledge

AI-powered audio visualization
Compeller.ai Audio-Reactive Visualization
AI-Generated

Combining the Best of Both Worlds

The future of audio-reactive visualization isn't about choosing between manual coding or AI—it's about effectively combining both approaches:

Use AI for:

  • Rapid prototyping
  • Complex pattern generation
  • Client presentations
  • Deadline-driven projects

Use Manual for:

  • Ultra-custom interactions
  • Specialized hardware integration
  • Precise algorithm control
  • Platform-specific optimizations
Try Compeller.ai Free

No credit card required. Forever Free Account.

Stay Updated

Subscribe to our newsletter for the latest tutorials, code examples, and insights on audio-reactive visualization techniques.